动力屈曲分析-数控滚圆机液压缩管机价格低数控缩管机滚圆机多少
作者:lujianjun | 来源:欧科机械 | 发布时间:2018-09-26 16:04 | 浏览次数:

考虑一类具有对称性的三自由度碰撞振动系统.系统的庞加莱映射在一定条件下存在对称不动点,对应于系统的对称周期运动.根据对称性导出庞加莱映射P是另外一个隐式虚拟映射Q的二次迭代.推导了庞加莱映射对称不动点的解析表达式.根据映射不动点的稳定性及分岔理论,映射P的对称不动点发生内伊马克沙克-音叉(Neimark--Saker-pitchfork)分岔对应于映射Q发生内伊马克沙克-倍化(Neimark--Sakerflip)分岔.利用隐式虚拟映射Q,通过对范式作两参数开折分析,研究了映射P的对称不动点在内伊马克沙克-音叉分岔点附近的局部动力学行为.碰撞振动系统在这个余维二分岔点附近的局部动力学行为可能表现为投影后的庞加莱截面上的单一对称不动点、一对共轭不动点、单一对称拟周期吸引子以及一对共轭拟周期吸引子.数值模拟得到了内伊马克沙克-音叉分岔点附近的各种可能情况.内伊马克沙克-分岔和音叉分岔互相作用可能产生新的结果:对称不动点虽然首先分岔为两个共轭不动点,但是这两个共轭不动点是不稳定的,最终收敛到同一个对称拟周期吸引子对固结于转动刚体上柔性薄板的刚柔耦合动力学和频率转向特性进行了深入研究,建立了系统的高次刚柔耦合动力学模型,该动力学模型计入 本文有张家港市泰宇机械有限公司全自动滚圆机采集网络整理 http://www.gunyuanji.com  了动力屈曲分析-数控滚圆机液压缩管机价格低数控缩管机滚圆机多少钱由于横向变形而引起的面内纵向缩短项,即非线性耦合变形量,并且完整保留了与非线性耦合变形量相关的所有项.研究表明,高次耦合模型不仅适用于小变形问题,而且还适用于大变形问题,弥补了一次近似耦合模型在处理大变形问题上的不足.旋转悬臂薄板相邻两阶模态间既有柔和的频率转向现象也有剧烈的频率转向现象.柔和的频率转向伴随着的振型转换的过程是连续的,而剧烈的频率转向伴随着的振型转换的过程则是不连续的.相隔多阶模态间存在传递性频率转向,并伴随着振型转移. 超空泡运动体的动力屈曲失稳具有隐蔽性、突发性和危险性,因而必须研究清楚运动体的失稳区域边界及失稳振幅.将超空泡运动体模拟成受轴向周期载荷作用的细长圆柱薄壳,给出非线性几何方程、物理方程和平衡方程,建立细长圆柱薄壳带有非线性项的动力屈曲微分方程组;依据非线性项的形式,给出合理的非线性位移表达式,得到具有周期性系数的非线性横向振动微分方程;采用伽辽金变分法和和鲍洛金方法,获得带有周期性系数和非线性项的马奇耶方程;求解非线性马奇耶方程,得到第一、第二阶不稳定区域内的定态振动振幅的解析表达式;绘制超空泡运动体的非线性参数共振曲线,分析航行速度、载荷比例系数、轴向载荷频率和振型对参数共振曲线的影响.以上研究为建立基于参数共振的圆柱薄壳动力失稳的可靠性分析及基于参数共振可靠性的结构动力优化设计的奠定了理论基础. 动力屈曲分析-数控滚圆机液压缩管机价格低数控缩管机滚圆机多少钱 本文有张家港市泰宇机械有限公司全自动滚圆机采集网络整理 http://www.gunyuanji.com